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CONSEQUENCES OF DIRAC'S POSITRON THEORY

W. Helsenberg and H, Euler
Leipzig, Germany

ABSTRACT: As a consequence of Dirac's positron theory one
must modify Maxwell's equations for the vacuum since any
electromagnetic field can produce pairs. These modifications
are computed for the case when physical electrons and posi-
trons are absent and when the field does not change appreci-
ably over one Compton wavelength, The Lagrangla:n for the
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For fields that are small compared to |€l, the terms in the
expansion of the Lagrangian describe scattering processes of
light by light. The simplest term is already known from
perturbation theory., Field equations for large fields are
derived and are quite different from Maxwell's equations.

The field equations are compared with those suggested by
Born.

The fact that matter can be converted into radiation and radiation into /T714*

matter leads to some fundamentally new aspects of
One of the most important consequences of this
for processes in empty space, Maxwell's equati
complicated equations. Since fields of sufficient en
will not generally be possible to separat i ;
cesses including matter. On the other icient energy for

generation of matter, the virtual possib d cuam
polarization' which again requires a ch
study this vacuum polarization, As usual itw

*Numbers in the margin indicate pagination in the foreign text,
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the modifications of Maxv !
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scattering of ligh
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The Lagrangian is found determined by (2). The Lagrangian
must be relat1v1st1cally in

efore be g function of the invariants
2 2

E“-B” and (EB) [3]. The calculation of U(E, B) is correlation with that of the
energy-density of a matter-field which is coupled to the constant fields E and B.
Before considering this problem, we will briefly outline the mathematical frame-
work of the positron theory [4.] m order to correct,some errors in the equatmns /116
given previously. , ' ~ ;

1. Mathmetical Framéwoi‘kof the Pgsitron Theo ey

The positron theory starts with Dirac's "density matrix" which is given by

(4)




in the wave representation, and by

(9)

in the quantum theory of wave fields™. Another important matrix is the matrix
R » which is defined by

(6)

or

U@ R | Byl a7 R = JgH@ ) p (& OF) — (& V(@ )]

The matrix R is a function of the differences a;l e a;'l' ;“’z an

smgular on the light-cone, With

N (8)

‘ ‘,,ffor the potentials and ec” £ ~ac., = 1 and m = kkc?)}r the Dirac

“matrices,

’ LA o? z', ‘ ” e
I gl ®

where**

W

*Error in I: The primed and dou
_interchanged in I.
**Error in I: The exponent has a negatwe sign in 1.




(The summation over ident ical Latml indices extends from 1 to 3, thatfor Greek
indices from 0 to 3). The integration along a straight line extends from P' to P,

The density matrix r characterizes the influence of matter. It is obtained /717
from RS with

r=B—8 (1)
where S is defined by

| i
st j‘“’ls+ (12)

5, 1s equal to the matrix R, in space free of fields and matter. 4, b and C are de-

fined by the following equations*:

o 0B L oF. & , :
: 4= {m—m z‘a‘(afe -6f 3L, ) B7a %%t ol P F,.,}, ' %
| ev ,0F, e
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o af kN
o=t (ymc>,
“¥'is Euler's constant, ¥ =1, 781...
The four-vector and the energy-momentum tensor are determined by r:
8 = —e 3 dd, @R IIER),
] z z ]
LLRE for o= [e(e )+ 23] 1)

b , z 7
~ *gndkuk. (§+ —g’ k |r|§“ 2’ k >'

In the quantum theory of wave fields it is of advantage to expand the wave function
in an orthogonal set of functions- :

(z: k) 2 an Un (x, l") : : (15) :

*A calculatlonal error in equation (38) of I led to a d'ifrrent value of C. Co Contra.ry to* ‘
common usage 1n 11 the Ietter ¥y denoted the Iogarxthm of Euler 8 constant




The operators a, can be rewritten as

(16)
where 4, converts the number N, into 1-N , and whe
We set
=t = —V, 4N af = —NodVy; Ny =1—N,.
The Hamiltonian of the total system, in the new variables, is /718

H=im j 8 (c,,haa 2[,4(5 vE)ra(e=2)) |
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The coefficients of an expansion in powers of the elementary charge are:
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2. Calculation of the Energy Density in
the Wave Representation

ell's equations must be a function of

t ig therefore sufficient to find an energy-
density of the mattern-fleld as a function of two independent field components. For
example, it is sufficient to determine the energy-density of matter in a constant
electric and parallel constant magnetic field. In these constant fields one must
examine the state of the matter-field which corresponds to the absence of matter.
This state is obviously that with the lowest energy. The lowest energy in the
wave representation [Eqs. (4) and (6)] is given when all negative-energy electron
levels are occupied and all positive-energy electron levels are empty. In the
presence of a magnetic field, stationary electron states can again be divided into
those with negative and those with positive energy. The lowest-energy state of the
matter-field can thus be found in the same way with a magnetic field or without
any fields.

The situation changes when an electron field is present. The potential
energy increases linearly with a coordinate. Any value of the energy between
- o and + oo is possible. Eigenfunctions for different eigenvalues can be made
identical by a mere shift in position. An unambiguous classification into positive
and negative eigenvalues is impossible.

The physical reason for this
difficulty is related to the fact that
electron-positron pairs can be gene-
rated spontaneously in a constant
electric field. A complete calculation
of this problem was given by Sauter
[5]. Figure 1 shows the potential
energy V(x), V(x)+ mec2 and V(x) - me2
as a function of the coordinate for an
electron field parallel to the x~axis.
Sauter's calculations show that eigen-
functions to an eigenvalue Eo are large in regions I and III, and that they decrease

exponentially within region II. This means that a wave-function which is large

in one region, e.g. region I, will gradually taper off in region I. According to

Sauter, the transmission coefficient of region I, which is equivalent here to a

potent1alwall (German' Gamowberg, Gamow smountam) isof order of magni- ,
i - m? ¢?

he

: Sl(‘fl < _ In this case it should be possible to find solutions of the Dirac equation
which replace the eigenfunctions. These solutions will, for example, be large in

region I and smf“"  (of order -—!w ! 2) at every place in region III, at least for

some time, Other solutions Wﬂl be large in III and will almost completely dis-
appear in I. With this part of the calculation accomplished, the lowest-energy
state can be found: all electron levels whose eigenfunctions are large in III only
must be occupied; all other levels must be unoccupied. The energy of such an

6
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electron state is the dlfference between the energy density at the point X, and E

If the»electrlc field is turned off ad1abat1ca11y, then
to the state of field-free space where only electron
gy are;pi"ci:‘cupied.

[compared equation
.thlS state of the
levels with nega

Our mathematical analysis follows Sauter's investigation. '
in the presence of an external magnetic f1eld B and an electrlc‘ fiel
direction of the x-axis) can be written as: -

uation

(LY BT ) s
% : +u3(zk—g~-———lﬂ3ly) ﬂmc}w—*—O

The motion along the y- and z- axis can be separated from that in direction x:

W Pzf

p=ce - E “i'f.‘,'i () - %- (20)

We define an operator K by the relation

gl

; ; - a . ew,, " »
K +a,@ha +oz,< ,-———(;lfB‘y)——ﬂmc.if (21)
- We therefore obtain:
X\‘ - ) az R 3 / =
; . e!lB e
z Ky = {—— h? i thaya, -J;——l + (p, + 5 | 8| y> + m’c’} v- (22)

{ JE - - ¥

‘This equation can be interpreted as wave equation for the function u (y) which is
as yet undetermmed ~ With

Y TR )
we have
\, PRVt 23 /721



since (22) is essentially the Schrddinger equation for the harmonic oscillator.
Hn(y) is the nth Hermite polynomial. From (23) one ‘obtains

(2n + 1 + o‘,)} u,,x ; (24)
i, 1‘2.,_, =)

|58|Ii

The operators K and oy anticommute. The wave equation (19) can be written in
the form ‘

(E—elSlz . 9 - o
i{—‘._c———'*'“”ha—;“*'l{}'/’:o' (25)

A canonical transformation can be applied to % ‘so that the matrix ay ,is diagonalized
and K and oy become ‘

11{ = Vm’c’ el%lh&n—l—l-{ao’z) (26)

!

lo—-ll'

The two matrices are based on another index which is independent of the spin-
orientation (i.e. the ""@"-coordinate). ¢z can be considered to be a simple
number (¢, = & 1); with the abbreviations

= 1 (clczlm—E), |
27
=V (meer+ 200y 140) | e
We obtam the equations

y

(EZ + ie)g+kf =0,

JThe form of the equatxo s ( 28) is 1dent1ca1 to that of Sauter 8 equatlon (12) The



The path of integration begms at + o, passes the smgular points at +i/2 and
-i/2, and returns to +oo.

As mentioned above, we will neglect pair-production in our calculations.
The parts of the functmns f and g, which vanish in one half—space will therefore
be accepted as elgenfunctlons For example, we set

reglon that was 1n1t1a11y empty. For the density matrix we consider the states
fl’ gl, ete. to be occupxed and fz, gl, etc. to be unoccupied. We have doubled

the number of "states'" by the procedure (30). One thus obtains twice the density
matrix if all fi, gi, fé, g;‘ are assumed to be occupied, and fz, gi, g, g% are

~ assumed to be unoccupied.

For a caIculatmn of the energy density in vacuum accordmg to the method of
Section 1, one would first calculate the density matrix for a finite distance between
the points r' and r'". Then one would subtract the singular S-matrix (given in
Section 1), compute the energy densﬂ;y and finally go to the limit r' = ¢", It is
more convenient to startfth C: ; other
hand, we will sum the s
convergence of the sum
amounts to about the same, Tt 1 )
some terms in the energy-density matrlx w111 become singular but they w111 be




compensated by the corresponding terms of the S-matrix. The remaining non-
singular terms will y1e1d the desired result.

Before writing the density matrix, the eigenfunctions must be normalized.
One might consider the eigenfunctions to be limited to a large distance L in the
directions of x and z (the eigenfunctions U (y) lready normalized)., For the.

z-direction, one "obtains the normahzatlon factor 1/ VL Because of the a

behavior of Sauter's eigenfunctions ([5], equation (22)) we get a faata p

in direction x. A summation over all states must be carried out, cwer
of the form

pm gkt

and over all energ1es of the form. E = (1};/2) m + const The sums can be converted

into integrals with the differential d;:r ;TE_
‘i“‘i"ﬁ ne

Y L m the eigenfunctions., For a calculation of the densgity at a point X the energy

where we have again omitted factors of

of the state is equal to the difference £ —e ](EI %,. An expression for the energy
density corresponding to the matrix R (compare Section 1) is then:

. . br * -~ ol el _kz;.
1 dp, (dE I
U—-—‘é—zo:(") EIJ)JTJH(E——G](Elx)u"(y)e

: [_ AP+l — [ — ol ()
| +IAP 6P —BP — gl

(31)

" [(a will be defined in (33)J; with (23a) we obtain

©

A g e
e "‘Z"’E’ L] w! 'Sdflfl :« (32)

——_20

ala

a{]fo 'f' (9. + Ifol? + lga["] e~ af".(

This expression will later be used to discuss the behavior for % > 0 We intro-
duce the abbreviations

e{(‘fliz= ; ez_[_{B_lh_b. g (33)
Loomde® , m’ c8 2
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a and b are dimensional-
critical field str
of the electron. ™

ss and express the ratios of the field strengths to the /724
to 1"1/1387 of the field strength at the boundary

Insertion of (29) into (33) yields

(34) ,;

g

;_——En)z«:)a +b. 'mcz(mc st,jds,e o (""‘“)('2“‘”) (35)
1 sy -~ 1 ‘ 2
8;; s : ;) (s’ 2) [(Srl- 33'1“&) N )]

4(8 +32+a)( 2)‘(32%5 :

me

7?) ) ea (36)

where



s

bution comes from the part of the path Whmh lies bet:ween the Smgularmes
There one can develop the loganthmmthe exponent mto powers of a:

Tad C tal s ,
4(8"+%)“—_12(8’ 1)3 s (38)

——-2n'b+ ,+1+

\_,

T
Then the expressmn* 1

3 +' 1: in the exponent cannot be simplified. Higher-order
terms 1n the exponent can, however, be cons:.dered to be small (we are 1nterested

expression for f(k) which is of the form

-12 e
f(k) _'T, ds(’ o +x(1+432)_2£A+Bk2+Ck‘ ] 39
; (39)
+ 2

Beforemtegrating | i‘t is of advantage to sum over n and ¢ according to

_z znn( to) (z+z>g<~ i
= ,{a<o>+ g () +2Ig<n>du+ g ~(n’+%>+~~}{

. ﬂ' + ‘h .

- 12



It is apparent that hlgher-order terms of Euler's sum rule do not contrlbute to )
the final result. Withe/a = g, (}’ 1,781 is Euler's constant) we obtain for & » 0 /726

! U ( h )’
drmet \me

1

)

16 B 16
— 5[+ @+ DT log[1 + @’ + 1)3]
+ g 108l + @ + 1))+ 2 2 1+ 2nb>log<1+2nb> (41)
4] {b+2b2(1+2 oy — sl + @ + 1) 8]

{b+ bE

Bl %

) + {1 +2nb)3}

{b+2b2 __M_L_.ﬂ_}}

8%

(1 +2:nb)2m-—l

A+
8,
, uM8

The coefficients Cm will be determined later.

The terms corresponding to the singular S-matrix must be subtracted from
this result, The field-independent part of this singular energy density is easily
obtained by repeating the calculation for plane waves

C’+p e.— (mc) dp;.,dpjdp,
‘ R

U,g = --2.[ Vm’

The calculation of the field-dependent parts of S is more difficult. According to
equation (13), a and b contam the field strengths to the second power: the same

13



holds for U The constant C in equatmn (13) is adjusted so that a vacuum polari-

zation proportwnal to the . or constant fie Therefore, all
terms of second order 18 tra ‘
order remam.

We obtain

,..m((gz %2) o

b 2 2 -
| 416m0 ,,wa( e ) Jim {116 % W@ 2log[1+(2‘n'+‘1)
-—11—100[1-}—(271 +1)b] -—--b 2 (1 +2nb) log(1+2nb)

+~—~(1+ 21+2 ;= ’10g[1+(2n +1)8]) (42)

ThLS (1+22

(1 +2n b)”)

14




For the other llmlg(a

lo b

[logb-—014 1R e e +0,202—-~ [log b (44)

In order to gain insight into the general beh irbitrary fields, we
arting from the usual

‘ L SR R e a? ; e % % 4
L= ‘;’(@‘..‘58’)4747!’7;@ %) je‘“”d’n?{““Wctgan-bnctgb’?f*“‘ .

Pl i
. +5® ~a’)} ; (45)
mey dy o
(@’:2 B4 7wimc? (T) j- e 3

o ,Cos (b + i) 7 - Cos b — i) g
' 7+ Cos(b—ia)y ‘ -
1 { tebn Cos(b-{-m)n-—()os(b za) + +§(bz ,aﬂ)] o

In the last expressmn for £ it is particularly obvious that € depends only on the

mvamants 62— and (0353)2 The cosine~terms can be expanded m‘ terms of the
square of the argument (b + 1a)? = b2 —a® 24 (ab) and (h—da)? = b —a*—2iab.| The
overall expressmn is real it can therefore be represented as a power-serles m

bz—a2 and (ab) I gener

om),

i » respectwely ]G
T 1\

t1on becomes

o VG*-—WM@(L%,)M‘

(1(_“]
cos(lé’k }@ : B+ 24(CB)

+ Lo — o)

The first term of the expansion in (43) agrees with the results of Euler and Kochel
(loc. cit.).

(45a)

15




The convergence of this power-
detail. For a = o the intergal
the integral becomes meaningl
infinite.. The power-series e
therefore be semiconvergent. The intergal (
path of integration is such that the singular
the integral (45) will cont m add't' nal imagin

e meaning become

ral (45) has a v.

This is justthe o

terms that descrlbe air-prod n electric field. The mtegral (45) appears
to be similar to the perturbation-theory integration over a periodically vanishing
denominator. One may assume that convergence of the integral is provided by

a damping term which reflects the frequency of the periodic resonance process.
The result of a calculation which bypasses the singular points will be correct up

to terms which are of order of magnitude corresponding to the resonance fre-
quency. According to (43) and (44), deviations from Maxwell's theory remain

nall compared to the electric field at distance

series expansion must be investig

at first sight,

fr e center of the electron., Even if the magnetic field is larger
lue, the corrections to Maxwell's equations will be small (of order

1 a

compared to the original terms) as long as log b is of the order of 1. For

, 375 I‘Lc
example, deviations from the usual Coulomb-force between two protons, due to

(43) and (44) will always remain small, On the other hand, o
that the additional terms for a Coulomb-field (which contain derivat
field strengths) may be more important than those mcluded 1111 e:
(44).

3. Implications of the Result for the Quantum
Theory of Wave Fields

The results of the derivation in the preceding section cannot ]
immediately to the quantum theory of wave fields,
the equations obtained above do not describe t 1te 130
field as seen by the quantum theory of wave fields. ‘:ﬁ:Consider‘firsf;gthat the state
of matter discussed in the previous section is the "unperturbed' state, Then
there are matrix elements of the perturbation energy which describe the simul-
taneous production of a photon and an electron-positron pair. Even if the energy
is insufficient to generate such particles, these matrix elements will give rise
to a second-order perturbation energy. This is due to the virtual possibility
of generation and annihilation of a photon and a pair; the appropriate calculation
1 >f pe turb t1on terms becomes intuitively obvious if
ilar orbits in a magnetic field are not
h states can radiate. The crucial
point for the ' ’ in the preceding section is that this
radiation need not be included in the classical theory of wave~fields. The solu-
tion obtained demonstrates that the charge and current density of matter vanishes
and that it therefore does not radiate. This is in contrast with the quantum
theory of waves in which a remainder of this radiation appears in form of a
second-order divergent perturbation energy.

red

16




The same type of perturbation energy appears in field-free vacuum ("self-
energy of the vacuum'’). Such self-energies appear Whenever one ca culates
the second- and higher-order energy contri
different state and return to the initial sta
been neglected. For example, the interac
ing is obtained by a perturbation calculati
fourth-order terms, one would get contr1 yut
result would not converge. The sc,‘k ering ¢

just mentioned; the
Cc. cit, ) is omputed

contrlbutes to the process ~ , (
tributions would diverge. St hvcalculatlons have so far b o 1
the Klein-Nishina equation) which seems to indicate that the omlssmn of the
diverging higher-order contributions leads to correct results, If this is true,

then the results of Sectlon 2 can be transferred to the quantum theory of waves. /731
e since the corresponding eq
ed. Each term in the expans
ow be related to a scattering p
Wi 1e appropriate term. For example, four

describe ordlnary scattermg of light by light. - Sixth-order terms descrlbe
processes where three photons are scattered off each other, etc. Independent of
whether the omission of higher-order terms is permissible from the point of view
of physics, each term in the expansion of the preceding section must agree with
the result of a direct calculation of the particular scattering process. This
perturbation calculation, according to the quantum theory of waves, must be
carried out up to thelowest—order term Wthh contr1butes to the process con-
gsidered, The un ; is ;

| from ter
‘pair. (The accuracy of the caleul '

order terms with the resultsf of a direct calculatmn of the scatterin

esul s 18 certainly not poss1b
actually occurs in large electric fleids the
in this case,

‘above do not apply

4, Physical Consequences of the Result

The results of Section 2 are quite similar in form to the formulae which
modify Maxwell's equations., Instead of the classi

1lculation uses a complicated function of the inva

order of magnitude of the first terms in the expan 81

the numerical value of ez/hc (compare [6]1). On the other hand,

one must also emphasize the differences between the results. Born uses the

modified Maxwell's equations as the basis of his theory while these modifications /732
appear as indirect consequences of the virtual possibility of pair-production in

The fact that there are more modifications to Maxwell's

erms with higher-order derivatives of the

so related to this consequence of the Dirac

£ f the self-energy of electrons cannot by

answered by ation of these modifications, Born's theory

showed that modifications of Maxwell's equations of the order of magnitude

17




1 )

considered here may be sufficient to eliminate difficulties that result from an
infinite self-energy. This result provides an important clue for the further
development of the theory.

In this connection, one must also ask whether results of the Dirac theory
concerning the scattermg of light by light, etc., can be considered to be fmal
or whether futur th b. d ield
theory and th
‘ con&deredto“be preliminar iles 101 .
‘S-matrix (inhomogeneity of the Dirac equation) seem o be arbitrary, Theref
future deviations from the present theory are possible in this respect, Such b
changes will have particular influence upon modifications of Maxwell's equations.
‘The present theory can be assumed to provide the correct order of magnitude and |
qualitative form of these modifications, Of course, it is as yet impossible to pre- 15«; .
dict the final form of Maxwell's equations in the future quantum field theory; it will
fbe essential to consider the total of all processes involving high-energy particles
f (e.g. "shower" formation),
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